Friday, September 4, 2015

Page 343

Problem 2

Problem. Show that $f(x)=3-4 x$ and $g(x)=\frac{3-x}{4}$ are inverse functions.
Solution. The domain and range of f are both the set of all real numbers. The domain and range of g are also both the set of all real numbers. Furthermore,

$$
\begin{aligned}
f(g(x)) & =3-4 g(x) \\
& =3-4\left(\frac{3-x}{4}\right) \\
& =3-(3-x) \\
& =x
\end{aligned}
$$

and

$$
\begin{aligned}
g(f(x)) & =\frac{3-f(x)}{4} \\
& =\frac{3-(3-4 x)}{4} \\
& =\frac{4 x}{4} \\
& =x .
\end{aligned}
$$

Problem 5

Problem. Show that $f(x)=\sqrt{x-4}$ and $g(x)=x^{2}+4, x \geq 0$ are inverse functions.
Solution. The domain of f is $\{x \mid x \geq 4\}$, which is the range of g, and the domain of g is $\{x \mid x \geq 0\}$, which is the range of $f(f(x)$ is the nonnegative square root). Furthermore,

$$
\begin{aligned}
f(g(x)) & =\sqrt{g(x)-4} \\
& =\sqrt{\left(x^{2}+4\right)-4} \\
& =\sqrt{x^{2}} \\
& =x . \text { (because } x \text { is nonnegative) }
\end{aligned}
$$

and

$$
\begin{aligned}
g(f(x)) & =(f(x))^{2}+4 \\
& =(\sqrt{x-4})^{2}+4 \\
& =(x-4)+4 \\
& =x .
\end{aligned}
$$

Problem 8

Problem. Show that $f(x)=\frac{1}{1+x}, x \geq 0$, and $g(x)=\frac{1-x}{x}, 0<x \leq 1$ are inverse functions.

Solution. To verify the domains and ranges, it might be helpful to draw their graphs.

We see from the graphs that the domain of f is the range of g and the domain of g is the range of f.

Furthermore,

$$
\begin{aligned}
f(g(x)) & =\frac{1}{1+g(x)} \\
& =\frac{1}{1+\left(\frac{1-x}{x}\right)} \\
& =\frac{x}{x+(1-x)} \\
& =\frac{x}{1} \\
& =x .
\end{aligned}
$$

and

$$
\begin{aligned}
g(f(x)) & =\frac{1-f(x)}{f(x)} \\
& =\frac{1-\left(\frac{1}{1+x}\right)}{\left(\frac{1}{1+x}\right)} \\
& =\frac{(1+x)-1}{1} \\
& =\frac{x}{1} \\
& =x .
\end{aligned}
$$

Problem 10

Problem. Match the graph of the function with the graph of its inverse function.
Solution. This graph is matched with graph (b). This graph passes through the points $(0,2)$ and $(6,0)$ and graph (b) passes through points $(2,0)$ and $(0,6)$.

Problem 17

Problem. Use the Horizontal Line Test to determine whether the function

$$
h(s)=\frac{1}{s-2}-3
$$

is one-to-one on its entire domain.
Solution. The domain of $h(s)$ is $\{s \mid s \neq 2\}$. The graph is

From the graph we can see that it is one-to-one. (The vertical blue line is an artifact of the software.)

Problem 20

Problem. Use the Horizontal Line Test to determine whether the function

$$
f(x)=5 x \sqrt{x-1}
$$

is one-to-one on its entire domain.
Solution. The domain of $f(x)$ is $\{x \mid x \geq 1\}$. The graph is

From the graph we can see that it is one-to-one on its domain.

Problem 29

Problem. Show that $f(x)=(x-4)^{2}$ is strictly monotonic on the interval $[4, \infty]$.
Solution. We find that $f^{\prime}(x)=2(x-4)$ and it is easy to check that $2(x-4) \geq 0$ when $x \geq 4$. Therefore, $f(x)$ is monotonic increasing on $[4, \infty]$.

Problem 33

Problem. Show that $f(x)=\cos x$ is strictly monotonic on the interval $[0, \pi]$.
Solution. We find that $f^{\prime}(x)=-\sin x$. We know that $\sin x \geq 0$ when $\left.0 \leq x \leq \pi\right]$, so $-\sin x \leq 0$ on that interval. Therefore, $f(x)$ is monotonic decreasing on $[0, \pi]$.

Problem 35

Problem. Find the inverse function of $f(x)=2 x-3$, graph f and f^{-1}, and state the domain and range of f and f^{-1}.

Solution. Write $y=2 x-3$, swap x and y, and solve for y.

$$
\begin{aligned}
x & =2 y-3 \\
2 y & =x+3 \\
y & =\frac{x+3}{2} .
\end{aligned}
$$

So $f^{-1}(x)=\frac{x+3}{2}$. The graphs are

The domain and range of both f and f^{-1} are the set of all real numbers.

Problem 41

Problem. Find the inverse function of $f(x)=\sqrt{4-x^{2}}, 0 \leq x \leq 2$, graph f and f^{-1}, and state the domain and range of f and f^{-1}.

Solution. Write $y=\sqrt{4-x^{2}}$, swap x and y, and solve for y.

$$
\begin{aligned}
x & =\sqrt{4-y^{2}} \\
x^{2} & =4-y^{2} \\
y^{2} & =4-x^{2} \\
y & =\sqrt{4-x^{2}} .
\end{aligned}
$$

So $f^{-1}(x)=\sqrt{4-x^{2}}$. This is the same as f, so the two graphs are the same. The graph is

The domain and range of both f and f^{-1} are the set $\{x \mid 0 \leq x \leq 2\}$.

Problem 45

Problem. Find the inverse function of $f(x)=\frac{x}{\sqrt{x^{2}+7}}$, graph f and f^{-1}, and state the domain and range of f and f^{-1}.
Solution. Write $y=\frac{x}{\sqrt{x^{2}+7}}$, swap x and y, and solve for y.

$$
\begin{aligned}
x & =\frac{y}{\sqrt{y^{2}+7}} \\
x^{2} & =\frac{y^{2}}{y^{2}+7} \\
x^{2}\left(y^{2}+7\right) & =y^{2} \\
x^{2} y^{2}+7 x^{2} & =y^{2} \\
x^{2} y^{2}-y^{2} & =-7 x^{2} \\
y^{2}\left(x^{2}-1\right) & =-7 x^{2} \\
y^{2} & =\frac{7 x^{2}}{1-x^{2}} \\
y & =\frac{\sqrt{7} x}{\sqrt{1-x^{2}}} .
\end{aligned}
$$

So $f^{-1}(x)=\frac{\sqrt{7} x}{\sqrt{1-x^{2}}}$. The graphs are

The domain and range of f are all real numbers and the interval $(0,1)$, respectively. The domain and range of f^{-1} are the interval $(0,1)$ and all real numbers, respectively.

